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Abstract—Safety-critical localization is essential for 

unmanned autonomous systems. LiDAR localization gains great 

popularity in urban canyons due to its high ranging accuracy. 

Inheriting from the integrity monitoring theory for GNSS, 

safety-certifiable LiDAR localization first consists in fault 

detection and exclusion (FDE). In face of numerous LiDAR 

measurements, conventional chi-square test for FDE is 

computationally intractable. What’s more, inliers could be 

mistakenly excluded without reconsideration. This paper 

proposes a computationally tractable and flexible FDE method. 

It’s realized via outlier mitigation aided by graduated non-

convexity (GNC) relaxation. The two novel loss functions 

truncated least square (TLS) and the Geman McClure (GM) are 

combined respectively. The outlier-mitigated planar-feature-

based LiDAR localization is formulated with GNC and TLS or 

GM. More importantly, a triple-layer optimization method is 

proposed to solve the localization formulation. Besides the 

typical GNC relaxation,  the control parameter is taken into 

consideration for tuning the outliers resistance degree. The 

outlier mitigated pose estimation and the weightings ranging 

from 0 to 1 for the exploited LiDAR measurements are finally 

produced. Extensive experiments of the proposed method is 

conducted on urban dataset. What’s more, considering that TSL 

and GM provides distinct outlier mitigation patterns, the 

performances from them are investigated and compared. 

Keywords—3D LiDAR, satety-critical localization, urban 

canyons, fault detection and exclusion, graduated non-convexity 

relaxation 

I. INTRODUCTION

Reliable and accurate localization is of great importance 
for the realization of unmanned autonomous systems [1]. The 
last decade has witnessed a substantial breakthrough in the 
accuracy of localization [2]. Nevertheless, safety certification 
is the prerequisite for the large-scale deployment of safety-
critical applications such as autonomous driving vehicles [3]. 
In particular, the safety-certifiable localization emphasizes 
that the potentially largest localization error should be 
quantified and the alarm should be triggered when the 
potential error exceeds the maximum acceptable error. 
Integrity is developed as a safety certification of the global 
navigation satellite system (GNSS) in the aviation field [4]. 
Specifically, integrity monitoring is conducted by two 
steps: 

(1) the fault (namely outlier) detection and exclusion (FDE)
which is typically performed via the Chi-square test. The
statistics of the residuals generated by the measurement model
are subjected to Chi-square distribution. Measurement with
the largest residual is detected and excluded as fault
successively until the Chi-squared test is passed; (2) the
calculation of the protection level (PL) which is defined as the
potentially largest localization error (yet not in the scope of
this paper). Therefore, a reliable FDE is of great importance
for integrity monitoring.

GNSS signals suffer from reflections and blockages 
leading to multipath effects and non-line-of-sight (NLOS) 
receptions in urban canyons. As a result, the positioning error 
is significantly degraded which can easily reach 10 meters in 
dense urban scenarios [5]. The light detection and ranging 
(LiDAR) based localization exploiting prior 3D point cloud 
maps has recently gained lots of attention which can provide 
centimeter-level accuracy by matching the real-time 3D point 
clouds with the prior 3D point cloud map [6]. However, as 
shown in our recent evaluation of diverse LiDAR localization 
schemes in urban canyons [7], outliers such as that from 
dynamic objects bring new challenges to the existing LiDAR 
localization. Therefore, to certify the safety of the LiDAR 
localization solution, a reliable FDE of the LiDAR 
measurements is highly desirable which is similar to the 
GNSS integrity monitoring. Differently, the number of 
measurements involved in the LiDAR localization problem is 
significantly more than the ones from the GNSS (e.g. 1,000 
LiDAR features for the LiDAR localization problem). As a 
result, a greedy search-based Chi-square test [8] for the FDE 
of LiDAR measurements would lead to an unacceptable 
computational load. In addition, the conventional Chi-square 
test-based FDE excludes the measurements one-by-one which 
could lead to the mis-exclusion. The excluded measurements 
would not be re-considered in the next iteration.  

Recently, the work [9] proposed employing the Black-
Rangarajan duality [10] and the graduated non-convexity 
(GNC) relaxation to mitigate the impacts of the outlier 
measurements in the point cloud registration problem. In 
particular, the pose of the system and the weightings of the 
measurements are estimated simultaneously by using the 
novel non-convex loss function, such as the Geman McClure 
(GM) and Truncated Least Square (TLS) functions. By 
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combining the GNC and TLS, the estimated weightings of the 
measurements are either 0 or 1 with a binary option. In 
particular, the measurement is excluded from the localization 
if the weighting is 0. By combining the GNC and GM, the 
estimated weightings of the measurements range from 0 to 1 
which aims to mitigate the impacts of the outlier 
measurements. Different from the Chi-square test, the GNC 
detects the outliers by considering all the measurements 
simultaneously and the outlier detection could converge in 
several iterations regardless of the number of measurements. 
To solve the non-convexity issue introduced by the novel loss 
functions to the original objective function, surrogate function 
is defined in GNC. Under the control of a non-convexity 
relaxation parameter, the surrogate function recovers the 
original objective function gradually from an initial convex 
pattern. Consequently, GNC computes a solution to the non-
convex problem, by starting from its convex surrogate and 
gradually increasing the amount of non-convexity by tuning 
the non-convexity relaxation parameter till the original 
objective function is recovered. As an extension, we 
implement the GNC to the GNSS outlier mitigation in [11] 
and improved positioning accuracy is achieved. However, the 
performance of the GNC in outlier mitigation relies on the 
selection of the kernel parameters of the applied non-convex 
loss function. In particular, the kernel parameter determines 
the non-convexity of the loss function. T-LOAM [12] 
combined the TLS and feature based-LiDAR localization to 
alleviate the impact of outliers. However, the performances of 
TLS and the softer loss function GM hasn’t been investigated 
and compared. 

To fill these gaps, this paper proposes a method to mitigate 
the LiDAR feature outliers by GNC combined with the Chi-
square test targeted at safety-critical localization in urban 
canyons. The main innovations are summarized as follows, (1) 
Different from traditional GNC, the kernel parameter of the 
non-convex loss function deciding the mitigation performance 
is additionally relaxed. The Chi-square test is combined 
providing a quantitative guarantee of the outlier mitigation 
performance. (2) The outlier mitigation performance under the 
two loss functions, TLS and GM, providing different outlier 
mitigation patterns are extensively evaluated and discussed. 

The paper is organized as follows. An overview of the 
proposed method is given in Section II. The detailed LiDAR 
localization method with outlier mitigation aided by GNC is 
introduced in Section III. Real-life experiments and 
discussions are presented in Section IV.  

 

II. OVERVIEW 

The overview of the proposed framework is shown in Fig. 
1. The input is the point cloud at each epoch and the prior point 
cloud map. Planar features are extracted referring to the 
geometric smoothness of each point [13]. The LiDAR 
localization is based on planar feature registration between 
that from the current point cloud and that from  the prior point 
cloud map. The registration is formulated as a non-linear 
optimization problem. Inspired by [9], the planar feature 
registration objective wrapped by the non-convex loss 
function is formulated as two terms. One is the weighted 
squared sum of the residuals between the feature and its 
corresponding plane [14]. The other is the penalty term 
derived from the robust kernel including the non-convexity 
relaxation parameter [10].  

 

Fig. 1. Overview of the framework proposed in this paper. 

Triple-layer iterated optimization guided by GNC is 
designed. The outermost layer is dominated by the kernel 
parameter of the applied non-convex loss function. The 
iteration on this layer is terminated until the Chi-square test on 
the converged cost is passed otherwise the kernel parameter 
would be decreased with the outlier mitigation degree 
increasing. The middle layer is dominated by the GNC non-
convexity relaxation parameter which starts minimizing the 
convex surrogate of the re-formulated objective. The iteration 
on this layer is terminated until the non-convexity relaxation 
parameter goes to a limit (for example, goes below 1 given 
GM kernel) where the non-convex original objective is 
recovered. The innermost layer is dominated by the alternative 
update of the pose state and the weight for each residual. The 
former is performed with fixed weights and terminated until 
the weighted squared sum of the residuals (WSS-R) is 
converged. The latter is solved in closed form with fixed 
residuals in the penalty term. The output is the localization 
results after outlier mitigation. 

In this paper, matrices are denoted as bold uppercase 
letters. Vectors are denoted with bold lowercase letters. 
Variable scalars are denoted with lowercase italic letters. 
Constant scalars are denoted with lowercase letters. In 
addition, the LiDAR body frame at the k epoch is represented 
as �∙�ℒ� . The map frame, defined as the initial LiDAR body 
frame, is kind of local world frame and denoted as �∙��. 

III. METHODOLOGY 

This section present the details of the proposed LiDAR 
feature outlier mitigation method aided by GNC relaxation for 
safety-critical localization in urban canyons.  

A. Planar feature-based LiDAR localization 

The localization is implemented by the registration of the 
planar features from the current point cloud and the prior map. 
The registration is formulated as a non-linear optimization 
problem. The residual is defined as the distance between the 

plane point ��,

ℒ� and its associated local plane as follows [14], 

��.

�ℒ�
� � � ��,
� 
�ℒ�

� ⊗ ��,

ℒ� � �ℒ�

� � � ��,
 
1� 

The 6d pose of the LiDAR at the current epoch is to be 

estimated and denoted as  �ℒ�
� � ��ℒ�

� , �ℒ�
� � ∈ ℝ� . The 

rotation part is �ℒ�
� ∈ ��
3�  and the translation part is �ℒ�

� ∈
ℝ  [15]. “ ⊗” denotes multiplication in ��
3�to realize the 
rotation transformation. ��,
�  and ��,
  is the parameter of the 

associated local plane obtained via principal component 

analysis (PCA) of neighbors around ��,

ℒ�  in the map. 
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The cost function of the optimization wrapped by loss 
function for outlier mitigation is represented as, 

"
�ℒ�
� � � min

�ℒ�
� & '
��.

�ℒ�

� ��
(ℒ�


)*

2� 

Where the ,ℒ�  is the number of planar features. '
∙� 

represents the loss function. The optimization is guided under 
a kind of maximum consensus. Intuitively, outlier makes up 
small proportion. When the residual is significantly large, the 
feature is assumed as outlier providing abnormal observation. 
The loss function mitigates the outliers via suppress the cost 
from these abnormal observations while maintain those small 
cost from large proportions of observations.  

B. Planar feature-based LiDAR localization aided by GNC 

relaxation combined with TLS or GM 

According to the Black-Rangarajan duality [10], the cost 
function wrapped by the loss function could be reconstructed 
as the addition of the WSS-R term and a penalty term, 

"-�ℒ�
� , .�, / 0 1 � min

�ℒ�
� ,.�

&
2�.
3��.
-�ℒ�
� 134

(ℒ�


)*
�Π 6 7 , 8 7 
2�.
��


3� 

Where 2�.
 ∈ [0,1]  denotes the weighting for each planar 
feature. .� denotes the weighting vector stacked by 2�.
 with 
< � 1, ⋯ , ,ℒ� . The WSS-R term is represented as 

∑ 2�.
3��.
-�ℒ�
� 134(ℒ�


)* . The penalty term of the weighting 

derived from the loss function is denoted as Π 6 7 , 8 7 
2�.
�. Its 

controlled by the kernel parameter / 0  of the loss function and 
the relaxation parameter  ? 0 . In the following, the superscript 


∙� 0  will be replaced by the abbreviation of specific loss 
function. The / 0  controls the shape of the loss function which 
determines the resistance degree to the outliers. The ? 0  
controls the convexity of the cost function. Given initial value 
of ? 0 , the equation (3) is the convex surrogate of the original 
cost function. As the ? 0  goes to its limit, the original non-
convex cost function is recovered. The optimization is iterated 
under the control of ? 0  and terminated until the original cost 
function is recovered. For each iteration, the initial guess for 
the minimization process of equation (3) is inherited from the 
last round. The GNC relaxation manner provides robust global 
estimation without requiring an initial guess in spite of the 
non-convexity. 

The two novel loss function TLS and GM are exploited in 
this paper. As depicted in Fig.1 in [9], they provide two 
distinct outlier mitigation patterns respectively. TLS is 
defined as  

' �@A 
�� � B �4 , |�| ≤ | / �@A |
/ �@A 4 , |�| > | / �@A | 
4� 

The corresponding penalty term for the two loss function is 
chosen referring to [9] and [10] as follows, 

Π 6 GHI , 8 GHI 
2�.
� � ? �@A 
1 − 2�.
� / �@A 4

? �@A � 2�.


5� 

With TLS, the weightings for measurements producing costs 
larger than the kernel parameter / �@A  are assigned as 0. 
Constraints from these measurements don’t contribute to the 
optimization as the Jacobian matrix of the constant cost 

relative to the pose is zero. While, the weightings for 
measurements producing costs smaller than / �@A  are assigned 
as 1. As defined in equation (4), the TLS maintains the cost as 
itself in this case. Thus, the penalty term should be canceled. 
As defined in equation (5), the weighting assigned with 1 
reaches this goal. With the relaxation parameter ? �@A  goes 
from zero to positive infinity, the original non-convex cost 
function is recovered from its convex surrogate gradually. 

The GM is defines as  

' LM 
�� � / LM 4�4

/ LM 4 � �4 
6� 

With GM, each measurement is assigned a weighting ranging 
from 0 to 1. The large costs will be decreased while the small 
costs will be maintained to some extent. The penalty term 
Π 6 OP , 8 OP 
2�.
� is chosen referring to [9] and [10] as follows, 

Π 6 OP , 8 OP 
2�.
� � ? LM / LM 4-Q2�.
 − 114 
7� 

In contrast to TLS, with the relaxation parameter ? LM  goes 
from positive infinity to zero, the original non-convex cost 
function is recovered from its convex surrogate gradually. 

As mentioned before, for both TLS and GM, the kernel 
parameter / �@A  and / LM  determines the resistance degree 
towards large costs. More importantly, smaller  kernel 
parameter introduces stronger resistance. The large cost will 
be mapped to a smaller one.  

C. Triple-layer Iterated Optimization for Outlier-mitigated 

LiDAR localization 

The LiDAR localization is formulated according to the 
combination of GNC relaxation and TLS or GM as introduced 
in Section III.B. This section presents the details of the 
proposed triple-layer iterated optimization method of the 
formulation for outlier-mitigated LiDAR localization. As 
shown in Algorithm 1, Chi-square test is performed on the 
outermost layer based on the solution from the two inner layer 
iteration. Convexity relaxation is performed on the middle 
layer. Alternative optimization of the two decoupled terms in 
equation (3) is performed on the innermost layer. Typical 
LiDAR localization aided by GNC relaxation is dominated by 
the relaxation parameter only. Additionally, the proposed 
method take the kernel parameter of the loss function into 
consideration. Furthermore, a quantitative guarantee of the 
outlier mitigation performance is achieved via the Chi-square 
test. The outermost layer optimization is depended on the 
results from the inner layer. Thus the innermost layer is 
presented first. 

Algorithm 1: The triple-layer optimization method for the outlier-

mitigated LiDAR localization aided by GNC relaxation combined 

with TLS or GM 

662
Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 31,2023 at 07:22:04 UTC from IEEE Xplore.  Restrictions apply. 



1 Outmost layer: 
2 Inputs: The kernel parameter / 0 , number of features ,ℒ�, 

significance level S for Chi-squared test. 
3 Do { 
4 Middle layer:  
5 Inputs: The relaxation parameter ? 0  
6 If '
∙� is TLS, 
7 While ? �@A → �∞, 
8 Innermost layer: Algorithm 2 

9 GNC relaxation: ? �@A ← 1.4 ∗ ? �@A  
10 End While 
11 Else if '
∙� is GM, 
12 While ? LM → 0, 
13 Innermost layer: Algorithm 2 

14 GNC relaxation: ? LM ← ? LM /1.4 
15 End While 
16 } 
17 Chi-square test:   

18 While ∑ 2�.
3��.
-�ℒ�
�134(ℒ�


)* > Y,ℒZ−6,1−S2  

19 / 0 ← / 0 /1.4 
20 End While 

21 Outputs: The pose estimation result �ℒ�
� , the weightings for 

each measurements .�. 

• The innermost layer. 

On the innermost layer, the minimization of equation (3) 
is performed given determined kernel parameter and 
relaxation parameter set in the two outer layers. As shown in 
Algorithm 2, the optimization of the WSS-R and the penalty 
term is implemented in turn. The initialization for the 
optimization on this innermost layer is inherited from the last 
round middle layer optimization. However, at the first middle 
layer optimization, the weightings and the pose are initialized 
as 1 and identity respectively. There is no requirement for 
initial guess [10]. The pose sate optimization is performed first 
with fixed weighting vectors via the typical non-linear 
minimization algorithm Levenberg-Marquart [16]. The 
weighting vector is updated after then. With fixed pose states, 
closed-form solution of the weighting vector is derived from 
the penalty term. It’s in the light of that the optimal solution is 
achieved when the gradient matrix of the penalty term relative 
to the weightings is zero. 

Algorithm 2: Alternative optimization of the WSS-R and penalty 

term (The innermost layer optimization method in Algorithm 1) 

1 Inputs: The kernel parameter / 0 , the relaxation parameter 
? 0 , weighting vector from the last round middle layer 

optimization 
.��[, pose state from the last round middle 

layer optimization -�ℒ�
�1[ 

2 Weighting Initialization: .� ← 
.��[ from the last round 
middle layer optimization 

3 Pose Initialization: �ℒ�
� ← -�ℒ�

�1[  from the last round 

middle layer optimization 
4 Do{ 
5 Pose state optimization with fixed weighting vector .� :                                

�ℒ�
� ← min

�ℒ�
� ∑ 2�.
3��.
-�ℒ�

�134(ℒ�

)*  

6 Weighting update with fixed pose state �ℒ�
� :                     

.� ← min.�
∑ Π / ' , ? ' 
2Z.<�(ℒ�


)*  

7 } 

8 Output: updated �ℒ�
�  and .� 

 

• The middle layer. 

On the middle layer, the relaxation parameter of the loss 
function dominates the iteration. The non-convexity of the 
decoupled cost function (3) is gradually increased from its 
convex surrogate one with the changing of the relaxation 
parameter. For each determined relaxation parameter, the 
innermost layer optimization is triggered. When the relaxation 
parameter reaches one limit, the original non-convexity cost 
function is recovered and thus the middle layer optimization 
is terminated. For implementation, the threshold for the 
relaxation parameter is designed referring to [9]. 

• The outermost layer. 

On the outermost layer, the kernel parameter of the loss 
function dominates the iteration. The noise of the registration 
is assumed to be zero-mean Gaussian distributed. 
Consequently, the WSS-R is subjected to Chi-square 
distribution. The Chi-square test is performed on the WSS-R 
regarding the solution produced by the two inner layer 
optimization process. With outliers reasonably mitigated, the 
WSS-R should be close to zero and pass the test. With outliers 
failed to be successfully mitigated, the WSS-R will exceeds 
the thresholds determined by the significance level of the test. 
The kernel parameter should be decreased in this case to 
provide stronger resistance towards the outliers. The 
optimization on the two inner layer will be executed once 
more until the test is passed. 

IV. EXPERIMENTAL RESULTS 

The experiment is conducted in typical urban canyons. 
The 3D LiDAR Velodyne HDL-32E is exploited to collect 3D 
point clouds. The prior map is built in advance by registring 
the point clouds with the pose solutions from NovAtel Span-
CPT, which also serves as the groud truth of the pose 
estimation. More details of the data collector setup could be 
found in our open-sourced dataset UrbanNav [5]. The data 
selected for evaluation of the proposed method is collected 
near Kowloon Tong in Hong Kong and abbreviated as KLT in 
the following.  

The root mean square of absolute translation error (ATE) 
implemented by evo [17] is utilized to evaluated the pose 
estimation quantitatively. The relative translation increment is 
set to 1 meter by default. The performance of the following 
three LiDAR localization pipelines with differen outlier 
mitigation  strategies are evaluated, 

1) Pipeline1:The LiDAR localization is formulated as the 

squared sum of the feature registration residual defined as 

equation (1).  Outlier mitigation is implemented iteratively 

via conventional Chi-square test. 

2) Pipeline2: The LiDAR localization is formulated as 

the decoupled one defined as equation (3) with GNC and TLS 

or GM. Covential GNC is exploited without the adjustment 

of the kernel parameter and further Chi-square test. 

3) Pipeline3: The LiDAR localization is formulated as 

the decoupled one defined as equation (3) with GNC and TLS 

or GM. The proposed tiple-layer optimization method is 

expolited to solve the pose.  
The experiment results shows that for pipeline1, the RMS 

ATE is around 10%. While the RMS ATE for pipeline2 is 
around 9%. For pipeline3, the RMS ATE is around 7% and 8% 
with the loss function instantiated as TLS and GM respecively. 
The proposed method achieved the best accuracy. The 
effectiveness of the proposed method is validated. For the 
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proposed method, slightly better performance is achieved with 
TLS compared with that with GM. The hard resistance to 
outliers of TLS outperforms the soft resistance manner of GM.  
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